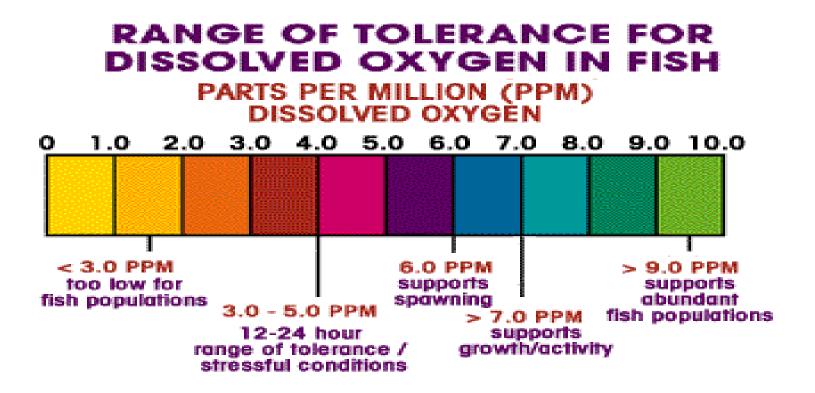
Lagoon Metabolism

Researchers: Stephanie Mendez, Christian Aguilar, Ghillmar Mancia, and Phong Nguyen Mentor: Heather McNair Faculty Advisor: Mark Brzezinski Department: Marine Biology

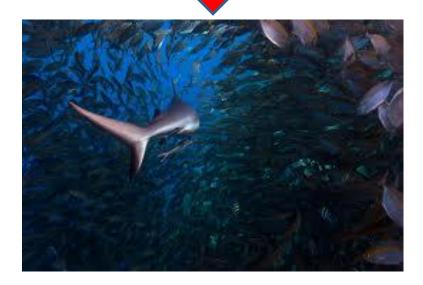
JKC Bridges Program 2013 –UC Santa Barbara

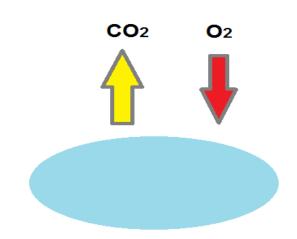
Lagoon History

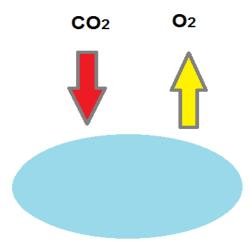
- Naturally formed in 37 acres of area.
- Unique mixture of both salt and fresh water.


Dissolved Oxygen in Bodies of Water

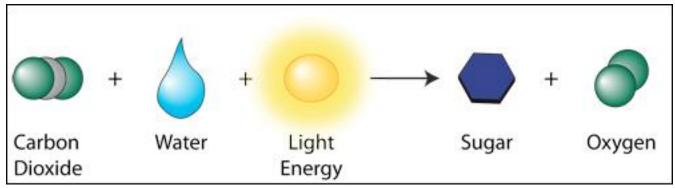
- Identify whether the lagoon can sustain aquatic organisms.
- Acts as indicator of pollution in the environment.

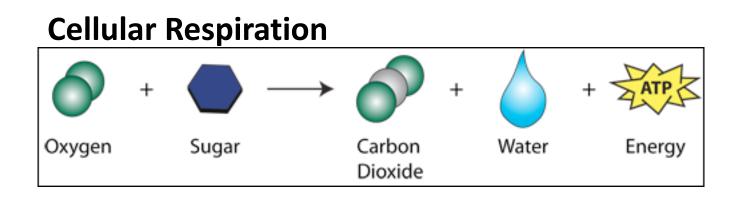

Project Goals




• Determine whether the lagoon is heterotrophic or autotrophic.

Heterotrophic vs. Autotrophic





Photosynthesis

Collecting Samples

per @2013 Data CSUMB SFML, CA OPC, DigitalGlobe, U.S. Geological Survey, USDA Farm Service Agency, Map data @2013 Google - Edit in Google Map Maker Report a problem 🛒

Incubation

• Incubation of light bottles and dark bottles over a 23 hour period.

Winkler Titration Reactions

 $MnCl_2 + 2NaOH \rightarrow Mn(OH)_2 + 2NaCl$

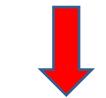
 Added Manganous Chloride and Alkaline lodide reagent to the water sample.

$2Mn(OH)_2 + O_2 \rightarrow 2MnO(OH)_2$

 A brown precipitate, Manganic basic oxide, formed which is a clear indicator of
 Oxygen present in the water sample.

$MnO(OH)_2 + 2H_2SO_4 \rightarrow Mn(SO_4)_2 + 3H_2O$

 Added Sulfuric Acid to the sample which dissolved the brown precipitate and formed Manganic Sulfate.


$$\mathsf{Mn}(\mathsf{SO}_4)_2 + 2\mathsf{KI} \rightarrow \mathsf{MnSO}_4 + \mathsf{K}_2\mathsf{SO}_4 + \mathsf{I}_2$$

 Manganic Sulfate reacted with Potassium Iodide from first step

 $2Na_2S_2O_3 + I_2 \rightarrow 2Na_2S_4O_6 + 2NaI$

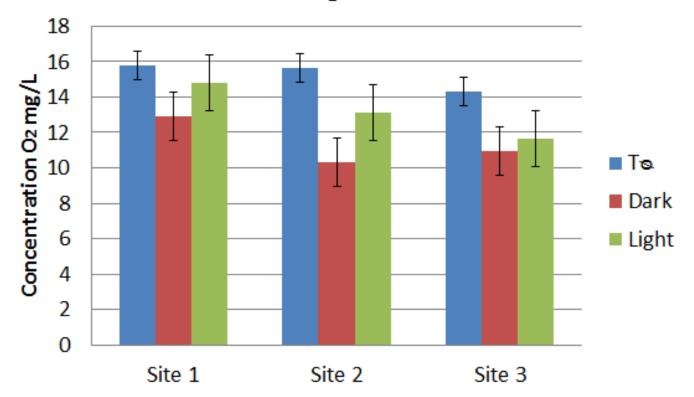
 The solution was titrated with Standardized Sodium Thiosulfate

 $2Na_2S_2O_3 + I_2 \rightarrow 2Na_2S_4O_6 + 2NaI$

- Added Starch solution to the sample which acted an indicator for oxygen.
- Titrated the sample with Sodium
 Thiosulfate until it reached its endpoint.

Calculating Dissolved Oxygen of the Samples

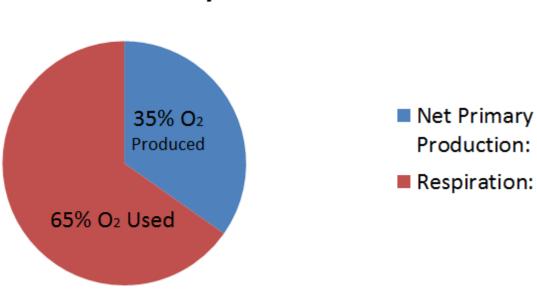
 $O_2 mg/L = (mLs Na_2S_2O_3 used) * (normality of Na_2S_2O_3) * (8,000 mg O_2 / mol Na_2S_2O_3)$


(mLs of sample titrated) * (<u>BOD bottle volume – reagent volume</u>) BOD bottle volume

Light Bottle - T=**Net Primary Production**

Dark Bottle - T=**Respiration**

Net Primary Production – Respiration = Gross Primary Production


Calculating Dissolved Oxygen

Average O₂ Levels

Results

- Lagoon is not producing enough oxygen for its organisms
- Lagoon is considered Heterotrophic

Gross Primary Production

Future Improvements

- Collect more samples.
- Sample middle areas of the lagoon and around

larger plants.

- Work with the reactions faster.
- Incubate for less time.
- Functional Dissolved Oxygen Meter YSI

Acknowledgments

Mentor : Heather McNair

Faculty Advisor : Dr. Mark Brzezinski

Dr. Anthony Karmis

Dr. Jens-Uwe Kuhn

Director Ofelia Aguirre

The Resident Assistants

UNIVERSITY OF CALIFORNIA SANTA BARBARA

THANK YOU ALL FOR COMING!